Progressive Components
Published

Laser Welding is More Than the Machine

The right laser welding formula leads to efficient mold repair and increased tool life.

Wesley Wheeler, Sales Manager, Phoenix Laser Solutions

Share

Welding is commonly used in mold repair to restore the mold to its optimal working condition. Advanced laser welding technology, coupled with experienced welding technicians and a fully equipped, on-site metallography lab, can help minimize or eliminate the negative effects of welding, increase mold life and improve the overall manufacturing process.  

For example, take a simple gate repair. Gates can become worn or damaged in a number of ways, and the right repair process can return the gate to its original state, or potentially to an even better condition. Here are the key steps to an efficient gate repair: 

Analyze the damage. Determine the degree of damage to the gate. Some gates develop cracks during operation. Others are damaged during startup or cycle interruption when the hot tip drips a small piece of plastic, the “cull,” into the gate. Still others may have been damaged in a previous repair process. 

Inspect the defects. Use visual inspection (at as high as 24x magnification) or even dye-penetrant inspection (DPI) or fluorescent penetrant inspection (FPI) to find the source of the defects. Finding any small pits, microscopic cracking and the roots of larger cracks are all important to the restoration process. If the defects are not identified and removed, they can create more problems for the gate and the mold in the future. 

Remove damaged material. Machine out the damaged and/or fatigued material. This not only removes stress, but allows the repair to be built on “virgin” steel that has not been affected by previous welds and thus restores the tool to a “like-new” condition. Once the stress and previous welds have been removed, the gate repair operation can begin.

Laser weld. Pulsed laser welding exhibits exceptionally low heat input, which offers several advantages compared to traditional tool-repair welding methods such as TIG, micro-TIG and plasma (see Figure 1). These advantages include a smaller, sometimes undetectable, heat-affected zone (HAZ); greater control of grain growth; desired hardness for as-welded repairs; wider variety of material combinations; general lack of pitting and internal defects; the potential to eliminate pre- or post-weld heat treatment; and reduced distortion or shrinkage. 

This process requires a pulsed Nd:YAG laser welding system developed specifically for the tool and die industry, and experienced operators. Conventional welding processes typically require pre- and post-heat treatment to be performed correctly, but laser welding often eliminates the need for these steps, creating a better weld and significantly decreasing turnaround time. 

These benefits, combined with targeted material selection and hardness matching, can result in a gate repair that surpasses what can be attained with traditional methods that match the base material and the filler. The laser welding process permits the use of a wide range of dissimilar metals, allowing selection of a filler metal that will result in optimal performance. Pulsed laser welding has an extremely low dilution rate, meaning the weld bond is better, so it allows for more adaptability that other types of welding. Laser welding can be used to combine many different materials, including P-20, beryllium copper (BeCu), stainless steel, S-7, H-13, and others. One of the most common marriages of materials is stainless steel to BeCu, which maintains the cooling properties of the BeCu while adding a better wear surface in the stainless steel (see Figure 2). For example, a 410 stainless steel filler can result in a repair with a fine martensitic microstructure, providing optimal wear performance without compromising the mold’s ability to withstand flexing during injection. 

Another advantage of laser welding in mold repair is the laser’s ability to reach areas that might be out of the welder’s range when using another method. Gates are very often in hard-to-reach places or surrounded by critical features. Laser welding is highly precise and can reach the target area and avoid these features. It is a line-of-sight process—if you can see it, you can weld it—making these repairs feasible and significantly reducing rework time. 

While the repair process for gates is relatively simple, laser welding can be applied to other repair challenges as well to increase tooling life well beyond its intended period, and save time and money in the process. 

Phoenix Laser Solutions

Progressive Components
Optimized Hot Runner Systems for Packaging
North America’s Premier Molding and Moldmaking Event
MoldMaking Technology Magazine
MMT Today enews
Techspex
Data Flute
Data Flute

Related Content

Basics

Laser Welding Versus Micro Welding

The latest battle in finely detailed restoration/repair of mold materials.

Read More

What You Should Know About Injection Mold Safety Straps

Every mold should have one in order to be safe and OSHA compliant.

Read More
Hot Runners

The Ins and Outs of Hot Runner Temperature Control

A training checklist that explains the why and how of proper hot runner temperature control and system management.

Read More
Tips

How to Overcome Complex Mold Texturing Problems

Key benefits when considering laser technology for mold texturing and repair.

Read More

Read Next

FAQ

How to Use Continuing Education to Remain Competitive in Moldmaking

Continued training helps moldmakers make tooling decisions and properly use the latest cutting tool to efficiently machine high-quality molds.

Read More
Maintenance & Repair

Reasons to Use Fiber Lasers for Mold Cleaning

Fiber lasers offer a simplicity, speed, control and portability, minimizing mold cleaning risks.

Read More
Progressive Components