YCM Technology (USA) Inc.
Published

Swiveling Hot Runner Manifolds

Rheo-Pro Slide

Share

At K 2013 in Hall 1, Booth A09, MHS-Mold Hotrunner Solutions has introduced Rheo-Pro® Slide™ Manifolds, a revolutionary type of hot runner system with rotating melt transfer joints that allow linked manifolds to move freely in order to distribute plastic anywhere inside the injection mold, the company states. The new technology now makes it possible to create injection points, or gates, directly inside the slides of a mold. It also allows molders to create continuous melt transfer connections that maintain contact, and therefore flow, even when the mold plates separate.

The patent-pending hinge design allows its rotating joints to maintain a constant seal while linking together multiple hot runner manifolds to create an uninterrupted, continuous melt path that is able to bend and move inside the injection mold, the company reports. The technology enables the melt channel to deliver material to the cavity across moving mold elements such as slides and lifters. Slide mechanisms are the only way to demold complex parts with exterior undercut side features. For example, many injection molded parts have details for customized functionality or side ribbing for rigidity requirements. During demolding, these design details can create insurmountable obstacles to the mold designer. Rheo-Pro® Slide™ Manifolds solve this problem by allowing entire sections of the mold to move, without interruption to the flow of material in the melt channel. This flexibility also makes the systems ideal for new part designs using stack molds, tandem molds, as well as rotary and cube molds.

The process can be compared to running your melt channels through a flexible hose, only pressure inside the melt channel of an injection mold typically reaches between 10,000 and 20,000 psi, or upward of 1400 bar. That’s roughly 600 times the pressure inside a car tire, or 1.3 times the pressure of the Mariana Trench, the deepest part of the ocean, which has a pressure of 1,086 bar (15,750 psi). This is the first and only technology that reportedly exists to keep liquid plastic flowing through flexible runners, let alone under such extreme processing conditions.

One of the oldest challenges in mold design has been to find an uninterrupted path for the melt to flow from the machine barrel to the nozzle, despite moving plates and other dynamic mold components. These systems offer the solution by creating continuous melt transfers that bridge gaps between opening and closing mold plates. Bolting together manifolds in a static arrangement in order to move plastic around the mold is nothing new. However, moving manifolds in a hot runner has never been done before. It opens up a world of possibilities for injection molders and mold designers.

In large thin wall parts, Rheo-Pro® Slide™ Manifolds overcome the challenge of flow path versus wall thickness ratio. Using cascade fill, very long flow paths can be realized, even in parts with extremely thin walls and large surface areas. A cascading injection sequence using multiple drops across the part can keep the melt pressure as well as the clamp force within limits. Having nozzles directly inside the slides of the mold is required in order for large parts with outside features and long sidewalls to fill completely and eject.

DUOFLOW
Order 24/7 from the DME eSTORE
Kor-Lok
VERISURF
IMTS 2024
Techspex
MoldMaking Technology Magazine
YCM Technology (USA) Inc.
NPE2024: The Plastics Show
Entegris Poco Materials
Aquilo Cold Deck LSR Systems by Mastip Inc.
Progressive Components

Related Content

Mold Materials

Advantages and Disadvantages of Copper and Graphite Electrodes

Both copper and graphite provide approximately the same end result, so it is important for a shop to consider the advantages and disadvantages of each material in order to discover what would work best in their shop floor environment.

Read More
EDM

Maintaining a Wire EDM Machine

To achieve the ultimate capability and level of productivity from your wire EDM on a consistent, repeatable and reliable basis, regular maintenance is a required task.

Read More
Cutting Tools

Treatment and Disposal of Used Metalworking Fluids

With greater emphasis on fluid longevity and fluid recycling, it is important to remember that water-based metalworking fluids are “consumable” and have a finite life.

Read More
Grinding

Machining Center Spindles: What You Need to Know

Why and how to research spindle technology before purchasing a machining center.

Read More

Read Next

3D Printing

Are You a Moldmaker Considering 3D Printing? Consider the 3D Printing Workshop at NPE2024

Presentations will cover 3D printing for mold tooling, material innovation, product development, bridge production and full-scale, high-volume additive manufacturing. 

Read More
Cutting Tools

How to Use Continuing Education to Remain Competitive in Moldmaking

Continued training helps moldmakers make tooling decisions and properly use the latest cutting tool to efficiently machine high-quality molds.

Read More
Surface Treatment

Reasons to Use Fiber Lasers for Mold Cleaning

Fiber lasers offer a simplicity, speed, control and portability, minimizing mold cleaning risks.

Read More
Progressive Components