MoldMaking Technology
Published

Contact Scanning System

SPRINT™

Share

Renishaw will launch its SPRINT™ high-speed analogue contact scanning system for CNC machine tools, in autumn 2013. The SPRINT system incorporates a new generation of on-machine analogue scanning technology that will deliver a step-change in the benefits of process control, enabling fast and accurate form and profile data capture from both prismatic and complex 3D components.

Drawing on Renishaw's partnerships with major businesses in key industrial sectors, the SPRINT machine tool scanning system has been designed to provide a game-changing capability for high value CNC manufacturing processes.

For blade manufacture, the SPRINT system provides unprecedented capability for blade tip refurbishment and root blending applications, the company states. The high-speed measurement of blade sections coupled with high data integrity (even on leading and trailing edges) ensures the indication of true part condition leading to an adaptive machining capability. Automated routines, such as set-up, blade alignment, blade scanning and data collection result in significant accuracy and cycle time improvements over touch-trigger systems, according to the company.

For multi-task machining applications, the SPRINT machine tool scanning system offers users completely new process control capabilities, including exceptionally repeatable diameter measurement cycles, the company states. By employing master part comparison, the SPRINT system becomes an “active” control—enabling measure-cut processes to be automated for accurate diameters on large parts. This capability can result in the size of diameters being automatically controlled to within a few microns of tolerance. Measurement functionality such as part run out, machine centerline and circularity, also serves to significantly enhance the manufacturing capability of multi-tasking machine tools, according to the company.

Additional functionality offered by the SPRINT system provides a rapid health-check of a CNC machine tool's linear and rotary axes in seconds, making it possible to implement a daily machine monitoring regime with little or no operator involvement.

Each SPRINT application is enabled and supported by a software toolkit package, which is dedicated to a specific industrial task, for example, the SPRINT blade toolkit. The toolkits include on-machine data analysis tools which run automatically in-cycle and provide measurement feedback to a CNC machining process.

At the core of the SPRINT system is the revolutionary OSP60 scanning probe. The OSP60 probe has an analogue sensor with 0.1 μm resolution in three dimensions, providing exceptional accuracy and the greatest understanding of workpiece form. The analogue sensor technology in the probe provides a continuous deflection output that is combined with machine position to derive the true location of the part surface. Measuring 1000 true 3D data points per second, the system's superior analytical capabilities provide unparalleled opportunities for workpiece measurement, inspection, adaptive machining and on-machine process control, whilst optimizing machine utilization and cycle time. This new scanning technology opens up new process control methods not previously possible with other measurement methods, according to the company.

In parallel to extremely fast and accurate 3D measurement the SPRINT analogue scanning system has also been designed to facilitate automated process control with no requirement for operator intervention.

Incorporating multiple patented technologies, the SPRINT system enables unrivalled high-speed, high-accuracy 3D surface data collection through powerful compensation of the static and dynamic volumetric errors which are often associated with high-speed machine movement.

The SPRINT system is a ground-breaking high-speed, high-accuracy tool with an exceptional range of potential applications, enabling a wide range of measurement and process control methods, reducing scrap and rework, while increasing machine capacity by reducing measurement cycle times.

VERISURF
IMTS 2024
MoldMaking Technology Magazine
Gardner Business Intelligence
NPE2024: The Plastics Show
Progressive Components
Aquilo Cold Deck LSR Systems by Mastip Inc.
Entegris Poco Materials
Techspex
Molded to Perfection with our Plastic Mold Materia
MMT Today enews
Order 24/7 from the DME eSTORE

Related Content

Portable Low-Heat, Non-Arcing Resistance Welder for Mold Repair

Rocklin’s user-friendly MoldMender Micro Welder delivers simple and cost-effective localized repair in-house with precision and versatility, enhancing mold and die durability and reducing disassembly and downtime.  

Read More
Education

The Ins and Outs of Hot Runner Temperature Control

A training checklist that explains the why and how of proper hot runner temperature control and system management.

Read More
Leadership

What is Scientific Maintenance? Part 2

Part two of this three-part series explains specific data that toolrooms must collect, analyze and use to truly advance to a scientific maintenance culture where you can measure real data and drive decisions.

Read More

Hands-on Workshop Teaches Mold Maintenance Process

Intensive workshop teaches the process of mold maintenance to help put an end to the firefighting culture of many toolrooms.

Read More

Read Next

FAQ

How to Use Continuing Education to Remain Competitive in Moldmaking

Continued training helps moldmakers make tooling decisions and properly use the latest cutting tool to efficiently machine high-quality molds.

Read More
3D Printing

Are You a Moldmaker Considering 3D Printing? Consider the 3D Printing Workshop at NPE2024

Presentations will cover 3D printing for mold tooling, material innovation, product development, bridge production and full-scale, high-volume additive manufacturing. 

Read More
Tips

Reasons to Use Fiber Lasers for Mold Cleaning

Fiber lasers offer a simplicity, speed, control and portability, minimizing mold cleaning risks.

Read More
VERISURF