9/3/2019 | 1 MINUTE READ

Volume Graphics Joins Rapid Tooling Project

Facebook Share Icon LinkedIn Share Icon Twitter Share Icon Share by EMail icon Print Icon

Volume Graphics announced its involvement with the Kunststoff-Institut in a second joint project on “Rapid Tooling” with companies from a wide range of industries.

Volume Graphics announced its involvement with the Kunststoff-Institut in a second joint project on “Rapid Tooling” with companies from a wide range of industries. As a project partner, Volume Graphics brings expertise in quality assurance and process optimization to the team via its advanced industrial computed tomography (CT) data-analysis software.

In tool and mold making, additive manufacturing (AM) is playing an increasingly important role in the quality and economics of high-efficiency metal production tooling with conformal cooling channels, and rapid prototyping of sample parts and plastic mold inserts. Mold inserts are a focus of the Consortium’s second project because of their critical importance in strengthening parts and/or encapsulating fabricated components.

The development phase of creating injection molded parts and inserts often requires the production of small-quantity prototypes. Two common approaches are, first, the modeling of sample “presentation” components using a low-end rapid process and, second, the more complicated method of using an aluminum molding tool, where the final part in the prototype production process is completed with an injection molding machine.

However, a new “rapid” method offers improved time and cost savings over aluminum: plastic molds, produced through industrial AM, that are then used for prototyping traditional plastic components with inserts. While the sample output is lower in plastic molds than in aluminum, plastic is proving more than sufficient for prototypes and is less expensive than metal.

Industrial CT has been an indispensable technology in tool and mold inspection for years, allowing non-destructive testing of manufactured components. Volume Graphics’ software provides a much deeper look into CT results, revealing flaws that may be invisible to the naked eye, comparing as-manufactured parts to their original designs and simulating the performance of part geometries to guide design and/or manufacturing corrections. Comparisons between CT and CAD datasets reduce molding-tool corrections for defects and warpage to a minimum.

The latest versions of Volume Graphics’ CT analysis software packages VGStudio Max and VGMetrology provide a manufacturing geometry correction module, which has been specifically developed by Volume Graphics for tool and mold making and additive manufacturing. Part shrinkage, distortion or other dimensional deviations detected in the CT data set can be transferred to the CAD model of the tool in order to analyze and redesign the relevant contour so that it 3D prints correctly.

RELATED CONTENT

Related Topics

Resources