Multi-Cycle Analysis for Injection Molding Simulation


Related Suppliers

SIGMA® Plastic Services has introduced SIGMASOFT® software designed for 3-D injection molding process simulation, The 3-D-approach of SIGMASOFT® allows all the components in a mold, including all the thermal and physical properties of each one of them, to be exactly reproduced. Therefore, the heat transfer process can be accurately calculated between each one of the components.

To accurately simulate the production conditions, the heat transfer process taking place in reality must be exactly reproduced in the simulation. This includes the heat-up during the start-up of the machine, when the mold is heated from room temperature to its production conditions (typically between 60º and 120°C) by the tempering system. It also includes the warming up produced by the hot polymer melt over several consecutive pre-production cycles, as happens in actual run conditions. 

SIGMASOFT® is able to exactly reproduce the heat-up stage, as well as simulate the thermal evolution of the mold over multiple consecutive production cycles. This accurate calculation predicts the real temperature in each location of the mold during production, producing a condition that more closely reflects reality for the polymer as it sets inside the cavity. This allows the software, for example, to predict how long the polymer remains in a fluid condition so that post-pressure can be applied, or where will the thermally induced deformation most likely compromise the part quality.  

Another of the advantages of multi-cycle simulation is the possibility to calculate how many production cycles are required for the mold to achieve cyclic equilibrium—and thus consistent quality conditions over a production run. Therefore, the number of parts required before the actual production begins can be more accurately predicted. The system can be optimized to minimize the number of pre-production parts that are required. Another possibility is to compare the efficiency of different tempering systems to understand how to achieve equilibrium more quickly or how to consume less energy.